Two-Dimensional Pursuit-Evasion in a Compact Domain with Piecewise Analytic Boundary
نویسندگان
چکیده
In a pursuit-evasion game, a team of pursuers attempt to capture an evader. The players alternate turns, move with equal speed, and have full information about the state of the game. We consider the most restictive capture condition: a pursuer must become colocated with the evader to win the game. We prove two general results about pursuit-evasion games in topological spaces. First, we show that one pursuer has a winning strategy in any CAT(0) space under this restrictive capture criterion. This complements a result of Alexander, Bishop and Ghrist, who provide a winning strategy for a game with positive capture radius. Second, we consider the game played in a compact domain in Euclidean two-space with piecewise analytic boundary and arbitrary Euler characteristic. We show that three pursuers always have a winning strategy by extending recent work of Bhadauria, Klein, Isler and Suri from polygonal environments to our more general setting.
منابع مشابه
TWO-DIMENSIONAL PURSUIT-EVASION IN A COMPACT DOMAIN WITH PIECEWISE ANALYTIC BOUNDARY By
In a pursuit-evasion game, a team of pursuers attempt to capture an evader. The players alternate turns, move with equal speed, and have full information about the state of the game. We consider the most restictive capture condition: a pursuer must become colocated with the evader to win the game. We prove two general results about pursuit-evasion games in topological spaces. First, we show tha...
متن کاملDynamic Programming for One-sided Partially Observable Pursuit-evasion Games
We study two player pursuit-evasion games with concurrent moves, infinite horizon, and discounted rewards. The players have partial observability, however, the evader is given an advantage of knowing the current position of the units of the pursuer. We show that (1) value functions of this game depend only on the position of the pursuing units and the belief the pursuer has about the position o...
متن کاملEstimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments
In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in the...
متن کاملEstimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments
In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in the...
متن کاملTwo-dimensional advection-dispersion equation with depth- dependent variable source concentration
The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1505.00297 شماره
صفحات -
تاریخ انتشار 2015